Development of a novel Stimulated Raman Scattering microscopy system


Project Description

Microscopy techniques based on vibrational spectroscopy are poised to be part of the next generation of microscopes for biological applications based on their unique chemical contrast and sub-cellular resolution for non-invasive, non-destructive and label free imaging of biological samples as live cells. The project will focus on the development of a fast and low-noise detection system in a setup for microscopic vibrational spectroscopy based on Stimulated Raman Scattering, which is one of the most advanced and sensitive methods for label-free microscopy for bio-imaging. The system will be applied to vibrational imaging of cancer stem cells to unveil their specific bio-chemical signatures. ​ ​​​​
Program - BioScience
Division - Biological and Environmental Sciences and Engineering
Field of Study - ​Electrical Engineering, physics

About the

Carlo Liberale

Carlo Liberale

Desired Project Deliverables

​Learn Coherent Raman Scattering techniques. Design, assemble and test circuitry for multiplexed and low-noise detection in a Stimulated Raman Scattering microscopy setup based on femtosecond broadband laser sources. Demonstrate fast and high S/N ratio imaging with multiplex (broadband) Stimulated Raman Scattering microscopy. ​